7.4 Logarithmic Functions Notes

Algebra II

Graph \(f(x) = 2^x \)

Type of Function: Is \(f^{-1}(x) \) a function?

Domain of \(f(x) \): Domain of \(f^{-1}(x) \):

Range of \(f(x) \): Range of \(f^{-1}(x) \):

Inverse of \(f(x) \): Graph \(f \) and \(f^{-1}(x) \):

Definitions:

Logarithm of \(y \) with base \(b \):

Common logarithm:

Natural logarithm:

Rewriting Logarithmic Equations

General: \(\log_b y = x \) if and only if \(b^x = y \)

<table>
<thead>
<tr>
<th>Logarithmic Form</th>
<th>Exponential Form</th>
<th>Exponential Form</th>
<th>Logarithmic Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_2 32)</td>
<td>(2^3 = 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log_{10} 1)</td>
<td>(5^0 = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log_9 9)</td>
<td>(7^1 = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log_{1/3} 25)</td>
<td></td>
<td>(\left(\frac{1}{3}\right)^{-1} = 3)</td>
<td></td>
</tr>
</tbody>
</table>
Properties and Special Logarithms:

<table>
<thead>
<tr>
<th>Log of 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of b with base b</td>
<td></td>
</tr>
<tr>
<td>Common Log</td>
<td></td>
</tr>
<tr>
<td>Natural Log</td>
<td></td>
</tr>
</tbody>
</table>

Evaluate the logarithm: *Ask yourself: “b raised to what power gives you y?”*

A) \(\log_3 81 \)
B) \(\log_{1/4} 256 \)
C) \(\log_{10} 0.001 \)
D) \(\log_8 2 \)
E) \(\log_5 \frac{1}{25} \)

Inverses

If \(f(x) \) and \(g(x) \) are inverses, then ________________

Therefore, since Logarithmic functions and Exponential functions are inverses:

Blank

Find the Inverse:

A) \(y = 10^x \)
B) \(y = \ln(x - 5) \)
C) \(y = \log_4(x - 2) + 1 \)